
EJOI 2025 Day 2
Task Navigation

English

Task Navigation 3 sec. 512 MB

There is a connected undirected simple cactus graph1 with 𝑁 ≤ 1000 nodes and

𝑀 edges. Its nodes have colors (denoted with non-negative integers from 0 to 1499).
Initially all nodes have color 0. A deterministic memoryless robot2 explores the graph

by moving from node to node. It must visit all nodes at least once and then terminate.

The robot starts at some node, which could be any of the nodes in the graph. At each

step, it sees the color of its current node and the colors of all adjacent nodes in some

fixed for the current node order (i.e. revisiting the node will give the robot the same

sequence of adjacent nodes, even if their colors are different from before). The robot

does one of the following two actions:

1. Decides to terminate.

2. Chooses a new (or possibly the same) color for the current node and which adjacent

node to move to. The adjacent node is identified by an index from 0 to 𝐷 − 1, where
𝐷 is the number of adjacent nodes.

In the second case, the current node is recolored (or possibly stays the same color) and

the robot moves to the chosen adjacent node. This repeats until the robot terminates or

until it runs out of time. If the robot has not visited all nodes before terminating or if it

runs out of time without terminating, it loses. The iteration limit is 𝐿 = 3000 steps.

You should design a strategy for the robot that can solve the problem on any such cactus

graph. Additionally, you should try to minimize the number of distinct colors your solution

uses. Here color 0 always counts as used.

1A connected undirected simple cactus graph is a connected undirected simple graph

(every node is reachable from every other node; edges are bi-directional; has no self-

loops or multi-edges) in which every edge belongs to at most one simple cycle (a simple

cycle is a cycle that contains each node at most once). The below image is an example.

0 1

2

3 4

5 6

2A robot is deterministic and memoryless, if its action depends only on its current inputs

(i.e. it stores no data from step to step), and it always chooses the same action when

given the same inputs.

Task Navigation (English) 1 / 4

EJOI 2025 Day 2
Task Navigation

English

Implementation details

The robot’s strategy should be implemented as the following function:

std::pair<int, int> navigate(int currColor, std::vector<int> adjColors)

It receives as parameters the color of the current node and the colors of all adjacent nodes

(in order). It must return a pair whose first element is the new color for the current node

and whose second element is the adjacency index of the node the robot should move to.

If instead the robot should terminate, the function should return the pair (−1, −1).

This function will be called repeatedly in order to choose the actions of the robot. Since

it is deterministic, if navigate was already called with some parameters, it will never

be called with those same parameters again; instead its previous return value will be

reused. Additionally, each test may contain 𝑇 ≤ 5 subtests (distinct graphs and/or start-

ing positions) and they may be run concurrently (i.e. your program may get alternating

calls about different subtests). Finally, the calls to navigate may happen in separate

executions of your program (but they may also sometimes happen in the same execu-

tion). The total number of executions of your program is 𝑃 = 100. Due to all of this, your

program should not try to pass information between different calls.

Constraints

• 3 ≤ 𝑁 ≤ 1000
• 0 ≤ Color < 1500
• 𝐿 = 3000
• 𝑇 ≤ 5
• 𝑃 = 100

Scoring

The fraction 𝑆 of the points for a subtask that you get depends on 𝐶 – the maximum

number of distinct colors your solution uses (including color 0) on any test in that subtask

or any other required subtask:

• If your solution fails on any subtest, then 𝑆 = 0.
• If 𝐶 ≤ 4, then 𝑆 = 1.0.
• If 4 < 𝐶 ≤ 8, then 𝑆 = 1.0 − 0.6𝐶−4

4 .

• If 8 < 𝐶 ≤ 21, then 𝑆 = 0.4 8
𝐶 .

• If 𝐶 > 21, then 𝑆 = 0.15.

Task Navigation (English) 2 / 4

EJOI 2025 Day 2
Task Navigation

English

Subtasks

Subtask Points
Required

subtasks
𝑁 Additional constraints

0 0 − ≤ 300 The example.

1 6 − ≤ 300 The graph is a cycle.1

2 7 − ≤ 300 The graph is a star.2

3 9 − ≤ 300 The graph is a path.3

4 16 2 − 3 ≤ 300 The graph is a tree.4

5 27 − ≤ 300
All nodes have at most 3 adjacent nodes and

the node the robot starts at has 1 adjacent

node.

6 28 0 − 5 ≤ 300 −

7 7 0 − 6 − −
1A cycle graph has edges: (𝑖, (𝑖 + 1) mod 𝑁) for 0 ≤ 𝑖 < 𝑁.
2A star graph has edges: (0, 𝑖) for 1 ≤ 𝑖 < 𝑁.
3A path graph has edges: (𝑖, 𝑖 + 1) for 0 ≤ 𝑖 < 𝑁 − 1.
4A tree is a graph with no cycles.

Example

Consider the sample graph from the image in the statement, which has 𝑁 = 7, 𝑀 = 8 and

edges (0, 1), (1, 2), (2, 0), (2, 3), (3, 4), (4, 2), (3, 5) and (2, 6). Additionally, since the orders

of the elements in the nodes’ adjacency lists are relevant, we give them in this table:

Node Adjacent nodes

0 2, 1

1 2, 0

2 0, 3, 4, 6, 1

3 4, 5, 2

4 2, 3

5 3

6 2

Suppose the robot starts at node 5. Then the following is one possible (unsuccessful)

sequence of interactions:

Task Navigation (English) 3 / 4

EJOI 2025 Day 2
Task Navigation

English

Colors Node Call to navigate Return value

1 0, 0, 0, 0, 0, 0, 0 5 navigate(0, {0}) {1, 0}

2 0, 0, 0, 0, 0, 1, 0 3 navigate(0, {0, 1, 0}) {4, 2}

3 0, 0, 0, 4, 0, 1, 0 2 navigate(0, {0, 4, 0, 0, 0}) {0, 3}

4 0, 0, 0, 4, 0, 1, 0 6 1navigate(0, {0}) {1, 0}

5 0, 0, 0, 4, 0, 1, 1 2 navigate(0, {0, 4, 0, 1, 0}) {8, 0}

6 0, 0, 8, 4, 0, 1, 1 0 navigate(0, {8, 0}) {3, 0}

7 3, 0, 8, 4, 0, 1, 1 2 navigate(8, {3, 4, 0, 1, 0}) {2, 2}

8 3, 0, 2, 4, 0, 1, 1 4 navigate(0, {2, 4}) {1, 1}

9 3, 0, 2, 4, 1, 1, 1 3 navigate(4, {1, 1, 2}) {-1, -1}

Here the robot used a total of 6 distinct colors: 0, 1, 2, 3, 4 and 8 (note that 0 would have

counted as used even if the robot never returned color 0, since all nodes start in color 0).
The robot ran for 9 iterations before terminating. However, it failed since it terminated

without having visited node 1.
1Note the call to navigate at iteration 4 would not actually happen. This is because it

is equivalent to the call at iteration 1, so the grader would simply reuse the return value

of your function from that call. However, this still counts as an iteration of the robot.

Sample grader

The sample grader does not run multiple executions of your program, so all calls to

navigate will be in the same execution of your program.

The input format is the following: First 𝑇 (the number of subtests) is read. Then for each

subtest:

• line 1: two integers – 𝑁 and 𝑀;

• line 2 + 𝑖 (for 0 ≤ 𝑖 < 𝑀): two integers – 𝐴𝑖 and 𝐵𝑖, which are the two nodes that

edge 𝑖 connects (0 ≤ 𝐴𝑖, 𝐵𝑖 < 𝑁).

The sample grader will then print out the number of distinct colors your solution used

and the number of iterations it needed before it terminated. Alternatively, it will print

out an error message, if your solution failed.

By default, the sample grader prints detailed information on what the robot sees and

does at each iteration. You can disable this, by changing the value of DEBUG from true

to false.

Task Navigation (English) 4 / 4

	Task Navigation
	Implementation details
	Constraints
	Scoring
	Subtasks
	Example
	Sample grader

