
EJOI 2020 Day 2

xorsort (English)

xorsort Page 1 of 2

XOR Sort
You are given an integer S and an array A consisting of N non-negative integers, indexed from

1. You are allowed to perform the following operation on it: choose any index i (1 ≤ 𝑖 ≤ 𝑁),

choose one of its neighbors j (1 ≤ 𝑗 ≤ 𝑁, either 𝑗 = 𝑖 − 1 or 𝑗 = 𝑖 + 1) and replace Ai with

(Ai ⊕ Aj) where ⊕ is the bitwise XOR operation. You can see the definition of XOR at the end of

the statement.

Your goal is to transform A into a sorted array:

● If 𝑆 = 1 then the final array must be strictly increasing, i.e. 𝐴𝑖 < 𝐴𝑖+1 for 1 ≤ 𝑖 < 𝑁

● If 𝑆 = 2 then the final array must be non-decreasing, i.e. 𝐴𝑖 ≤ 𝐴𝑖+1 for 1 ≤ 𝑖 < 𝑁

Find any sequence of operations that achieves your goal.

You aren’t required to minimize the number of operations as long as their amount doesn’t

exceed 40000.

Input

First line contains two integers: N and S

Next line contains N integers: elements of A

Output

First line of output should contain one integer K (0 ≤ 𝐾 ≤ 40000) - the number of

operations.

Next K lines should contain two integers each, describing operations in chronological

order: the first integer is an index i of the element which is being replaced and the

second one is an index j of another element involved in the operation.

Constraints

● 1 ≤ 𝑆 ≤ 2

● 2 ≤ 𝑁 ≤ 1000

● 0 ≤ 𝐴𝑖 < 220

Subtasks

1. (25 points) 2 ≤ 𝑁 ≤ 150, 𝑆 = 1, All elements of A are distinct

2. (35 points) 2 ≤ 𝑁 ≤ 200, 𝑆 = 1, All elements of A are distinct

3. (40 points) 2 ≤ 𝑁 ≤ 1000, 𝑆 = 2

EJOI 2020 Day 2

xorsort (English)

xorsort Page 2 of 2

Examples

Input Output

5 1

3 2 8 4 1

3

1 2

4 3

5 4

5 2

4 4 2 0 1

3

3 2

4 3

5 4

First example output explanation:

[3, 2, 8, 4, 1] -> [1, 2, 8, 4, 1] -> [1, 2, 8, 12, 1] -> [1, 2, 8, 12, 13]

Second example output explanation:

[4, 4, 2, 0, 1] -> [4, 4, 6, 0, 1] -> [4, 4, 6, 6, 1] -> [4, 4, 6, 6, 7]

When performing XOR operation between a and b bits the result will be 0 if a=b and 1

otherwise.

When performing bitwise XOR operation between integers a and b, XOR results will be

carried out for each of the corresponding bits:

75 ⊕ 29 = 86

1001011 ⊕ 0011101 = 1010110

In C/C++/Java you can use the “^” operator to perform XOR.

